This material is shared as a learning resource to promote awareness and good practice in the provision, use and management of water resources for sustainable social and economic development and maintenance of African ecosystems.

Copyright for this material rests with the authors.
How Smart Water Management technology can contribute to SDGs

Bitna Lee
UNESCO i-WSSM Programme Specialist
Contents

1. Paradigm Shifts of water issues
2. Concept of SWM
3. Research framework
4. Case study – Paju Smart Water City
5. Conclusion
Securing proper water and stable allocation is the hot discussion topic to the whole global humanity.

Global Agenda
water crisis & water security

1970s ‘Water Quality’
1980s ‘Environment’
1990s ‘Water Crisis’
2000s~ ‘Water Security’

Smart Water Management
SWM for Better Water Management

Global challenges are integrally related to Water Management

Climate Change

Water-Energy-Food Nexus

Sustainable Development

Common subject for All

Smart Water Management
Concept of SWM

- Getting feedbacks from users are not an option when water flows are in one direction

- With smart devices and solution programs, each water node can communicate and feedback the water information in terms of water quantity & quality

* ICT based real-time decision support system with using multi-directional water and information flows as well as diverse sources
Introduction of Research

- Analyze social, technological, economic, environmental, and political aspects of SWM
- Measure the level of SDGs implementation
- Identify the importance and role of SWM
Research Processes

Design STEEP-based Analysis Framework

Develop 5W-Track Analysis Framework

Develop SWM Comprehensive Performance Indicator System

Conduct SWM Case Analysis
Design STEEP-based Analysis Framework

[Background + Input]
- Politics
- Society
- Technology
- Environment
- Economics

[Output + Outcome]
- Economic Performance
- Environmental Performance
- Social Performance

[Impact]
- Economic Field
- Social-Economic effect
- Social-Environmental effect
- Environmental Field
Development of 5W Track Analysis Framework

- Developed on the basis of value chains like the comprehensive analysis framework, structured to produce results for 5 questions (5W) through the results of each domain
- Structuring SWM comprehensive analysis framework considering STEEP structure and SDGs goals
SWM Comprehensive Performance Indicator System (1/3)

<table>
<thead>
<tr>
<th>Objective</th>
<th>Issue Category**</th>
<th>Indicator**</th>
</tr>
</thead>
</table>
| Changes in social structure and recognition | Social | • Water supply population growth
• Number of Job Creation in the water industry
• Reflection degree of social needs
• Quality-of-life Improvement
• Comprehensive Evaluation Index (100 point Max) |
| Applied Technology | Technological | • Drinking rate of water
• Rate of water purifier installation
• Rate of water sales
• Reduction of leakage quantity
• Comprehensive Evaluation Index (100 point Max) |
| Rate of change of ecosystem about Water Management | Environmental | • Quality of water index*
• Number (Kind) of Inhabitant
• Kind of bird
• Riparian Environment
• Comprehensive Evaluation Index (100 point Max) |
| Changes (Effects) in economic structure/condition of the water industry | Economic | • Increasing number of water-related industry
• Reducing social costs
• The estimated amount of benefits
• Consignment fee
• Cost estimating of value
• Market competition
• Decreasing rate of Budget Waste in the water industry
• Comprehensive Evaluation Index (100 point Max) |
| Policy and administrative changes about Water Management | Policy | • Number of legislation compared to developed countries
• Number of National issues about water industry
• Implementation ratio of water related policies
• Comprehensive Evaluation Index (100 point Max) |
SWM Comprehensive Performance Indicator System (2/3)
Developed as STEEP-based core-sector-hierarchical structure of individual indicators
Five sector indicators, 16 small sector indicators, and 136 individual indicators
Five Core Expert Groups Review & Evaluation

- Experts’ survey to review the performance and effect of SWM.
Case Study

| Paju Smart Water City |
Smart Water City (SWC)

- Paju SWC is based on a combination of smart devices, smart solutions (technology), and smart services

Smart Devices
- Re-chlorination device
- Automatic flashing device
- Pipeline flushing device
- Pipeline diagnosis device
- Water quality sensors
- Smart meters

Smart Solutions
- Water-NET
 - water network monitoring system
- Remote leakage monitoring system

Smart Services
- Real-time water quality information system
- Reflecting consumer’s needs
Smart Water City (SWC) – Paju City

For healthy tap water supply and water quality’s reliability, adapt ICT techniques through all water supply process (Paju city)

Result

- Direct drinking Tap-water rate improved significantly (1.0% → 24.5%)
- Improve quality and service satisfaction of Tap-water (55.0% → 92.3%)
- Chlorine equivalent rate improved from 24.3% to 36.4%
- Significantly reduced Tap-water quality complaints (4.5 → 1.3 times/month)
Result | SWM Comprehensive Performance

2016 SWM total score 80.9

SWM Comprehensive Performance on STEEP fields

- Politics: 78.5
- Technology: 80.2
- Economics: 87.2
- Environment: 77.0
- Society: 81.7

Four SWM Comprehensive Performance Levels

1. **2016 SWM importance** 76.7
2. **2016 SWM compliance level** 84.6
3. **2016년 SWM satisfaction** 83.3
4. **2016년 SWM contribution** 79.0
Result | Contribution of Paju SWC to SDGs

SDGs Compliance Score, 84.6 (in 2016)

SDGs target Scores

SDGs Average | SDG 6.1 (Access to drinking water) | SDG 6.2 (Access to sanitation facility) | SDG 6.3 (Water quality improvement) | SDG 6.4 (Water use efficiency, Water supply) | SDG 6.5 (Water Resource Management) | SDG 6.6 (Ecosystem conservation) | SDG 6.a (International cooperation) | SDG 6.b (Local government degree of participation) | SDG 7 (Provide sustainable energy at the right price) | SDG 11.5 (Water related Disaster Reduction)
Conclusion

- Basic research for global sustainable use of water suggesting the introduction of SWM in the water management field

- Draws the level of implementation of SDGs as numerical value and performance result through study on SWM exemplary case.

- Low-cost SWM can be realized even in underdeveloped countries, and it will provide strategies and guidelines to encourage SWM application.
Thank you

UNESCO i-WSSM (http://unesco-iwssm.org/)
Ms. Bitna Lee (blee@unesco-iwssm.org)
Case Study 2

Integrated Water Resource Management System
IWRM Project

Water Management Forecasting & Decision-Making Technologies

WROC (Water Resources Operations Center) functioning as a hub for IWRM practices

Major Works
- Remote Dam-weir management
- Weather analysis & prediction
- Flood control. Water supply
- Hydro power generating

Result
365 Days and 24 hrs., Water Disaster preparation and Integrating Dams and Weirs.
IWRM System for Local

- Implement to Local Governments
IWRM System for Abroad
In ALGERIA
Result | Contribution of IWRM System to SDGs

- **SDGs 평균**
 - SDG 6.1
 - (대수 접근성
 - 접근성 확보)
 - SDG 6.2
 - (수질 개선)
 - SDG 6.3
 - (물 이용 효율과 물품급)
 - SDG 6.4
 - (수자원 관리)
 - SDG 6.5
 - (제한적 개방과 참여)
 - SDG 6.6
 - (지방정부 참여와 지속 가능하며 에너지 제어)
 - SDG 6.6
 - (물 관리 제도)

- **Quality of life improvement**
 - SDG 6.1
 - 82.9
 - SDG 6.2
 - 91.8
 - SDG 6.3
 - 88.2
 - SDG 6.4
 - 82.1
 - SDG 6.5
 - 80.9
 - SDG 6.6
 - 83.3
 - SDG 6.7
 - 80.4
 - SDG 6.8
 - 83.7
 - SDG 6.9
 - 73.5
 - SDG 6.a
 - 91.8
 - SDG 11.5
 - 73.5

- **SDGs Compliance Score, 84.6 (in 2016)**
 - Social: 83.3
 - Politics: 83.3
 - Technology: 83.3
 - Environment: 81.3
 - Economic: 91.7

- **Indicators**
 - Water supply and efficiency: 83.3
 - Water-related ecosystem protection and restoration: 73.3
 - Water-related education and training: 73.3
 - Water-related infrastructure: 74.3
 - Water-related environment: 72.3
 - Water-related economic effect: 73.6
 - Water-related social effect: 71.1
 - Water-related political effect: 70.8
 - Water-related technological effect: 74.3

- **Legend**
 - Extremely Low level: 0.0
 - Low level: 16.7
 - Normal: 33.3
 - High level: 50.0
 - Comparative High level: 66.7
 - Extremely High level: 83.3
 - 100.0
What Korean have done
Pool country to Now

1960s: Planning
1970s-1990s: Construction
1990s-2000s: Digitalization
2010s ~: Intelligence

- Investigation & Long-term Planning
- Dams and water treatment infra.
- ICT convergence
- Pay more attention to scientific water mang.
- Global knowledge share & standardization

of Water disasters

Lessons from past

3/8
Now we have Water Resources

Constructing 38 dams with hydro power plants

- Developing and managing multipurpose dams to prevent floods, provide water, and hydro power plants
- Building eco-friendly dams with minimal impact on surrounding ecology and boosting tourism of the neighboring areas

Developing and operating 38 dams, including the Soyang River Dam.

- Total Amt. of Water: 13,072 million m³
- Flood Controlled: 5,066 million m³
- Amt. of Water Provided: 11,672 million m³
- Amt. of Energy Generated: 1,047,000 kW

<Responsible for over 60% of all electricity generated by general hydroelectric plants in Korea>
• STEEP-based comprehensive performance analysis framework
• 5WTrack Analysis Framework
• SWM performance measurement system
 (1 composite indicator, 5 sector indicators, 136 individual indicators)
• 5 key areas Expert Group Overall assessment

- SWM technology, policy, industrial environment
- Water management paradigm change
- Exemplary case related to internal and external environment
- Background and Results of Exemplary case

- Analysis results using indicators
- 5WTrack analysis framework analysis results
- Results of 5 core expert groups
- SWM comprehensive evaluation result
- Differentiation and excellence of SWM
- SDGs implementation level (implementation level and results)
SMART WATER MANAGEMENT
<table>
<thead>
<tr>
<th>Back</th>
<th>Input</th>
<th>Output</th>
<th>Outcome</th>
<th>Impact</th>
</tr>
</thead>
</table>
| **비교** | 국립고고학연구소는 2012년부터 1년간 소요포된 소요포
| **비교** | 국립고고학연구소는 2012년부터 1년간 소요포된 소요포된 소요포
| **비교** | 국립고고학연구소는 2012년부터 1년간 소요포

What makes SWM different?

<table>
<thead>
<tr>
<th>What makes SWM different?</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교</td>
</tr>
</tbody>
</table>

What is the role effect of SWM?

<table>
<thead>
<tr>
<th>What is the role effect of SWM?</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교</td>
</tr>
</tbody>
</table>